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Abstract

Geophysical inversion typically requires some sort of regularization in order to
produce the best geologic model of the subsurface given geophysical data. One
approach to this is to use a variational autoencoder (VAE) to parameterize a lower-
dimensional space where the subsurface can be represented. It has been shown that
Monte-Carlo methods and gradient based inversion in this lower dimensional space
allow for the recovery of geologically realistic models that honor the recovered data.
In general, these methods have been applied where prior knowledge on recurring
patterns in the subsurface is high, but priors on spatial locations of features is low.
Here, we extend the use of VAE gradient based inversion to parameterize specific
geologic settings where uncertainties on the locations and physical properties of
geologic features are defined in a set of synthetic models. We show that convexity
of the inversion objective function can be controlled to a degree by sampling
synthetic model parameters from prior distributions on the VAE latent space.

1 Introduction

There is considerable value in being able to image the subsurface of the earth. In particular, geophysi-
cal imaging techniques can help determine the location of critical resources. Forward modelling is the
task of, given some subsurface model m (such as a conductivity or mass distribution), computing the
measurements that will be observed by above-surface instruments. The forward model, represented
by F[m], is entirely deterministic. The inversion problem is the task of, given some geophysical
data measured above-surface, determining which subsurface geologic model m produced the data.
Different subsurface geologic models that give rise to a set of geophysical data are not unique due
to limitations of the surveys and physics. Therefore, geophysical inversion is necessary in order to
obtain the best subsurface model given the geophysical data. In geophysical inversion, the subsurface
model is typically discretized into cells with a given physical property (e.g. density) and data is
predicted by iterative forward modeling of the discretized subsurface until the predicted data is within
an error tolerance of the ground truth data. Due to the non-uniqueness of solutions to the geophysical
inverse problem, in order to obtain the best physical property model, prior information regarding the
geology of the subsurface must be introduced. Often times this prior information takes fairly simple
forms, and recovered models, while useful for general interpretation, are not able to represent the
complexity of the local geology.
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Deep generative neural networks (DGNN5s) allow for the introduction of more complex geological
prior information into inversion. DGNNs can be trained on a group of spatial models deemed
geologically realistic for a given scenario, and a lower dimensional latent representation of the
geologic models is used in the inversion. Recently, both generative adversarial networks (GANs) and
VAEs have been successfully used in inversion. However, in GANs, the non-linearity of the encoding
into the latent space has been shown to significantly hinder gradient based inversion. In VAEs on
the other hand, recent work has showed that optimal tuning of the training parameters can reduce
the non-convexity of the inversion optimization. However, these methods have primarily been used
where there are high priors on the types of geologic material and general shapes and structures of
materials.

To apply gradient-based inversion to geologic scenarios that might be typical of mineral exploration
or large scale geologic structure delineation, it is necessary to create a synthetic data set that is
representative of the expected geology. Here we show that gradient based optimization as applied
to these types of problems is feasible given the VAE architecture and training set are constructed
appropriately. We demonstrate this with a simple example, and then demonstrate the effective
inversion in a more complex scenario.

2 DGNN Inversion and Related Work

2.1 Inversion and DGNN inversion

To avoid confusion between terms in the geophysics and machine learning communities, we refer to
the subsurface physical property model as a model, and avoid the use of the term for neural networks.
In order to achieve an optimal model, geophysical inversion is often framed as an optimization
problem with the following objective function:

¢(m) = da(m) + adm(m) (1)

where m is a discretized approximation of the subsurface of the earth that is endowed with some
physical property sensitive to the geophysical survey applied. Forward modeling is then done by
applying a set of operations F' that constitute partial differential equations or analytical solutions
depending on the problem, and data values are predicted at the locations of the observed data. The
model is then iteratively altered, often through gradient based methods, until a desired value for the
data misfit is reached In this paper, we will be choosing F' = G, where G is a linear operator that
computes the vertical component of the gravity response at the data locations for models cells set to
fixed densities.

Here ¢4 is the data misfit function, which punishes deviation of the forward modeled data from the
acquired data. Assuming the error in each datum is distributed uniformly, it reads:

¢q = | Flm] —d||? )

where d is the observed data. Due to the non-uniqueness of solutions to the inverse problem, it
is necessary to introduce the regularization term ¢,,(m) which places some kind of constraint
on the model, such as ensuring that the model does not stray too far from a reference model.
However, because of the simplicity of this form of prior information, recovered models often are not
representative of the complex subsurface geology. Geophysical inversion problems also often have
inherent non-convexity due to the nature of the physics. This means that a cooling strategy is used for
the regularization parameter o, where a high value of the parameter is used to enforce convexity at
the outset before being gradually decreased until a desired data misfit is reached.

DGNN:S can be used to parameterize the subsurface and represent more complex geologic scenarios.
In particular, VAEs have an encoder and decoder; in the context of geophysical modeling, the encoder
takes training images from a dataset {z*}¥ | taken from the subsurface model space M and maps
them to a latent space Z. The decoder dec(z) maps samples from Z back to M. Jointly training the
two can give the latent space favorable properties. In the case of a VAE, two terms are used in the
loss function L.

L= B gy | a)llog(po(a’ | 2))] + 8- KL(go(2 | 27) || p(2)) 3)



In VAEs, typically the likelihood pg(x® | z) is assumed to follow a Gaussian distribution, so the first

; ; ; N i |2 i
term is proportional to a reconstruction error » ., ||z* — (z*)"||*, where samples x* are encoded
by the latent distribution g4(z | 2%), and then the decoder dec(z) is used to reconstruct a copy
of the original image, (z°)” = dec(z). The second term, the KL-divergence, penalizes the latent
distribution g4(z | x%) for straying too far from the prior p(z). We use a slight modification of
the traditional VAE called a -VAE, which controls the KL-divergence penalty strength with a
hyper-parameter 8. Due to favorable computational properties, Gaussian distributions are assumed
for both g4(z | z) = N (u(at, ¢), 0%(2%, ¢)) and p(z) = N(0,1). The parameters 6, ¢ are learned
as the weights and biases of the neural network.

Once the network is trained, rather than solve for the model m, we consider the latent representation
z, in which case the inversion objective function becomes

¢(2) = [|Gldec(2)] — dIf* + a|2]|? )

where the gradient of the loss function can be obtained using automatic differentiation, and z is
optimized until a desired misfit is reached. The regularization term keeps z close to the prescribed
normal probability distribution p(z) = N(0,1).

2.2 Recent Work

Research efforts have focused on the best way to implement DGNNSs into inversion, and to determine
the feasibility of gradient based approaches as well as extension of the method to a wider scale of
geologic settings. Laloy et al. [2] used a GAN trained with convolutional nerual networks (CNN) to
learn a lower dimensional representation of training models. They successfully ran inversions with
Markov Chain Monte Carlo methods in the latent space. However, in gradient based inversion, which
is preferable due to relatively low computational cost, convergence was shown to be highly dependent
on the choice of initial model, indicating that the encoding to the latent space is highly nonlinear.

Lopes-Alvis et al. [3] showed that the mapping from the geologic model space to the latent space
changes the topology of the misfit function. Due to the high amount of non-linearity of the generator
and a rough approximation of the distribution of the latent space, extreme non-convexity can be
introduced into the inversion, which hinders gradient based methods. However, they showed that if
appropriately constructed, a VAE can be used to map from the model space to a latent space and
only introduce a small amount of non-convexity into the inversion optimization. This is achieved
by altering the 8 hyper-parameter in the KL-divergence term during training, where there is often
some trade off between the sharpness of the images generated from the latent space and the convexity
of the gradient based inversion. They used randomized croppings from training images to train the
network, and had a high prior information on material properties and general structure consistent with
shallow geophysical surveys. However, their work was not applied to typical large scale geologic
scenarios, where priors on location of general structure could be stronger.

McAliley et. al [4] used a conditional VAE to preform an inversion that would be encountered in a
typical large scale geologic scenario. They showed that priors could be placed on spatial locations and
general geologic structures using a synthetic set of geologic models to train the VAE. However, the
VAE was conditioned with data, meaning each training example had forward modeled data attached
as input. While this approach allowed them to quickly sample geologic models from the posterior
once the CVAE was trained, the training of network would be cost prohibitive in comparison to
gradient based inversion.

3 Methods

3.1 Gravity Inversion

In order to test the effects of the synthetic data sets on the convexity of the inversion, we implemented
a 2D gravity inversion using Pytorch [S]. We pulled the linear gravity operator G from the open
source geophysical inversion software Simpeg [1], and converted it to Pytorch to run the inverison.
To minimize the objective (@), we applied gradient descent with a modified line-search. We started
with a higher value of «, and when the optimization stalled we dropped the value of « until we could



come close to the data misfit, or we hit a minimum value prescribed to «. Because the optimization
was mildly convex, when it stalled, we allowed a larger jump in the gradient where the Gaussian
noise was added to the gradient components. Importantly, this was not a restart, and was only meant
to kick the optimization out of local mimina.

3.2 Synthetic Model Generation

For our synthetic models, we discretized the subsurface into a 65x65 cell mesh. Each cell was 10x10
meters. Due to the nonlinearity of dec(z), the misfit function ¢4 is not necessarily convex; to test the
convexity of the misfit function in the learned latent space, we first generated spherical models in a
uniform background with a fixed radius and density, see figure (IJ).

Figure 1: Examples pulled from the uniformly and normally distributed training sets for the sphere in
a homogeneous background. The x and y locations were pulled from normal or uniform distributions
for the normally trained VAE and the uniformly trained VAE respectively.
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For the first training batch, we sampled the location of the sphere from uniform distributions in
each component extending to the edges of the mesh. For the second training batch, we sampled the
location of the sphere from Gaussian distributions in each component, where the edges of the mesh
were three standard deviations from the mean. 10000 samples from each of these models were used
as training sets for the VAE.

Additionally, we created two synthetic training sets representing more likely geologic scenarios,
see figure (3). Both training sets consisted of layered earth models that are typically present in
many geologic areas. For the first training set, all parameters to produce the synthetic models were
pulled from normal distributions. For the second training set, all parameters were pulled from
uniform distributions from within 1.75-2.25 standard deviations of the normal distribution. The layer
densities and thicknesses were fixed, representing some level of geological certainty that might be
available from surrounding drill-hole samples. The layer locations were pulled from either normal
or uniform distributions representing geologic uncertainty in their locations. Additionally, various
other parameters were pulled from normal or uniform distributions in order to simulate geologic
folding (the wave-like characteristics seen in figure (3))). Finally, a dipping fault was added to each
of the models, with the location and dip pulled from normal or uniform distributions. Although
each training set had parameters pulled from these distributions, the generation of the models was a
relatively complex combination of the parameters.

3.3 VAE Architecture and Training Parameters

For the implementation of the VAE architecture, we used the network described by Lopez-Alvis et
al. [3] The encoder and decoder each consist of four convolutional layers and two fully connected
layers. Each convolutional layer is followed by instance normalization and a leaky relu activation.
The parameters we varied during the training were the 8 hyper-parameter in the KL misfit term,
and the number of latent dimensions. The choices for these are highly dependent on the problem.
For the sphere that only varied with location, we set the latent dimensionality to two. For the more
complicated geologic models, following the work of Lopez-Alvis et al. [3], we selected 5 and
the dimensions of Z based on the quality of the training sample reconstruction and the quality of
randomly generated models in the latent space. A value of 200 was chosen for 3 for the VAE trained
on the normally distributed training set. To match the reconstruction error, a value of 3 = 150 was
selected for the VAE trained on the uniformly distributed training set. The value of the KL divergence
of the uniform VAE was 1.23 times that of the normal VAE. We trained all of the VAEs for 50 epochs.



4 Results

4.1 Simple Sphere Convexity Test

Both of the uniformly drawn and normally drawn sphere locations reproduced adequate samples in
the latent space in terms of the quality of the samples and the variety of the samples. However, this is
not an adequate criteria for inversion, as it does not indicate the convexity of the optimization. For
each sphere latent space, we calculated the loss of our objective function using a sample chosen from
the synthetic set. The results are shown in figure (2) below.

For the VAE trained on uniformly drawn spheres, there is significant non-convexity of the objective
function, while for the VAE trained on normally distributed spheres, the function is convex. This
is evidence that training the VAE on data drawn from a Gaussian distribution is significant. This is
because the KL-divergence term in the training drives the learned latent space towards a Gaussian
distribution. In this case, pulling the sample locations from normal distributions forced the VAE to
learn an orthogonal basis for the latent space with respect to the sphere locations. Thus, the choice
of Gaussian synthetic models can promote disentanglement, a phenomenon occurring in 3-VAEs in
which a single latent component controls only one attribute of the decoded data. While complete
disentanglement does not mean complete convexity of the objective function, it can be a way to help
promote it.

Normally Distibuted Sphere Uniformly Distibuted Sphere
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Figure 2: Both figures were generated using a sphere placed in the center. The left figure is the data
misfit ¢4(z) from the VAE trained on normally distributed sphere locations, and the right figure is
the data misfit from the VAE trained on uniformly distributed sphere locations.
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4.2 Geologically realistic inversion

True Model Normal VAE Recreation Uniform VAE Recreation
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Figure 3: The true model used for testing the inversion recreated by the VAE trained on normally
distributed data and the VAE trained on uniformly distributed data.
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We tested our synthetic layered earth model by attempting to reproduce the model m in figure (3).
No noise was added to the forward modelled data, so the recovered models were expected to be fairly
close to the ground truth model. Both the VAE trained on uniformly distributed data and the VAE



trained on normally distributed data adequately reproduced the true model, as shown in figure (3). We
randomly generated a set of initial models from the synthetic training set and encoded those models
for the uniformly and normally trained VAE. The inversions were allowed to run for either 5000
iterations, or 5 gradient kicks with randomly added noise, and the result that had the lowest misfit
was saved.

The results of the inversion and three different starting values for the inversion regularization (o =
103,10, 107) for the VAE trained on normally distributed data are shown in figure (EI) All of the
inversions recovered a reasonable model and reached a low data misfit. figure (€) shows the true
encoded and recovered latent vectors. The sparsity of the recovered latent vectors for the high
regularization shows that the VAE only needed a few components to fit the bulk of the data, indicating
a fair degree of disentanglement. The recovered latent components for the normal-trained VAE are
also closer in space to the true model, as indicated by the Euclidean distance from the true model.
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Figure 4: Recovered inversion models for five random initial models (1st row) for the VAE trained on
normally distributed data. The strength of the regularization used for the inversion is labeled on the
left. Each model is labeled with the recovered data misfit ¢4. They all achieve a reconstruction close
to the desired true model from figure (E[)

The results of the inversion and three different starting values for the inversion regularization (o =
103,10°,107) for the uniformly-trained VAE are shown in figure . While the results do place the
general location of the dip of the fault, they often fail to adequately reproduce the angle of the dip.
Additionally, the recovered latent vectors from the models varied more from the encoded model, as
shown in figure (6). While some of the components show good agreement, many vary significantly
from the true model for all starting values of the regularization, indicating that the recovered models
were far in the latent space from the true model. Therefore, the allowed stochasticity in the gradient
based method was not sufficient to kick the inversion out of local minima.

In general, both of the inversions preformed fairly well and were fairly similar for a range of true
models. However, both also tended to get stuck in some local minima, often with similar final
results. This is not surprising, as inverting for parameterized geometric structures is inherently a
non-linear problem. However, for some starting models such as the example shown, the normally
trained inversion significantly out-preformed the uniformly trained inversion. There are a number
of possible reasons for this. When looking at the latent vector of the encoded models shown in
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Figure 5: Recovered inversion models for five different starting models (1st row) for the VAE trained
on uniformly distributed data. Many of the models failed to recover the correct orientation of the dip
from figure (3).

figure (6), it is clear that the uniformly trained VAE has a component which is at the tail end of the
distribution. This makes sense, as although both VAE’s had similar reconstruction error, the VAE
trained on the uniformly distributed samples had a higher KL Divergence. Therefore, it warped the
Gaussian distribution to fit the training set. This means that the latent space was poorly regularized for
the purpose of inversion, and a cooling strategy would not necessarily work. The overall difference
between the true encoded and recovered latent vectors was also higher for the uniformly trained VAE,
meaning that randomization methods to break out of minima are likely to be more expensive.

A second reason for the improved performance is that the level of disentanglement for the normally
trained VAE is better. In particular, it was able to come close to the true model by primary using a
combination of only a few of the latent components. One particularly interesting disentanglement
feature we achieved was the ability to alter the angle of the fault in the inversion without significantly
effecting other features of the recovered model. For gravity data that dies off as a function of 2, this
can be quite significant, as slight changes to the upper layer of the model can significantly change
the data. If the latent vector components are entangled in the sense that altering the fault angle also
changes the amplitude or phase of the geologic folding, the inversion may be prone to getting stuck
in local minima. To test this, we built a slider applet that would update the model based on changing
individual latent vector components. We picked a model with no faulting and vertically centered dip
to test the disentaglement. We found a latent vector component that best changed only the dip, and
altered its value from -3 to 3. The results are shown in figure (7). The normally trained VAE is able
to dramatically change the angle of the fault without significantly altering other attributes, such as the
waviness of the model. The uniformly trained VAE on the other hand is not able to change the dip
significantly without altering the curvature of the layered earth or the locations of the layers.

A last possible reason is the particularities of the training set, and where we pulled the distributions
from. All samples from the uniformly-trained VAE were pulled from 1.75 to 2.25 standard deviations
of the set normal distributions. A typical sample from the normally-trained VAE would have less
overall variability, but the overall training set would have included more examples of extreme
individual features (sampled from the tail of the Gaussian). The typical sample from the uniform
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Figure 6: The true (first row) and recovered latent vectors for five different starting models and
three different regularization levels. The Euclidean distance between the recovered and true encoded
models are shown to the left of each recovered vector.

Figure 7: Results of altering one latent vector component for the normally-trained VAE (top row) and
the uniformally-trained VAE (bottom row). Disentanglement is strong for the normally-trained VAE.

distribution was more diverse, but did not have any factors pulled from far outside the distribution.
Therefore, the training of the uniformly-trained VAE could have been hampered because it had to fit
a more diverse model on average.

5 Discussion and Future Work

In this paper we addressed how to improve convexity of geophysical inversion when inverting in
the latent space of a 3-VAE. In particular, we focused on how a synthetic data set could be created
to introduce only moderate non-convexity into the inversion. The two dimensional sphere example
shows that it is possible to enforce orthogonality of the latent components through sampling the
training set from a distribution of similar form to the prior of the latent space. The geologically
realistic training example admittedly had many confounding factors by nature, but results do show
that using a VAE trained on normally distributed data tends to enforce disentanglement and convexity
of the objective function. However, our example case was quite simple, and there are serious questions

Z Component Magnitude



of whether gradient based inversion is possible in this type of geologic context as the complexity
of the models increases. Additionally, it seems quite limiting to have a uni-modal Gaussian prior
on the auto-encoder. In future work, we would like to explore using more complex training models,
introducing uncertainties into physical properties, and testing the feasibility of introducing other
types of priors in gradient-based inversion.

Acknowledgments and Disclosure of Funding

The authors would like to acknowledge Andy McCaliley and Jorge Lopez-Alvis for being willing
to discuss their work and share their thoughts on the directions of this research topic. Additionally,
thanks to Jorge Lopez-Alvis for sharing the code for his research work.

References

[1] Cockett, Rowan, Seogi Kang, Lindsey J. Heagy, Adam Pidlisecky, and Douglas W. Oldenburg (2015)
SimPEG: An Open Source Framework for Simulation and Gradient Based Parameter Estimation in Geophysical
Applications." Computers and Geosciences, doi:10.1016/j.cageo.2015.09.015.

[2] Eric Laloy, Niklas Linde, Cyprien Ruffino, Romain Hérault, Gilles Gasso, Diederik Jacques, (2019) Gradient-
based deterministic inversion of geophysical data with generative adversarial networks: Is it feasible?, Computers
Geosciences, https://doi.org/10.1016/j.cageo.2019.104333.

[3] Lopez-Alvis, Jorge, Laloy Eric, Nguyen, Frederic, Hermans, Thomas. (2021). Deep generative models in
inversion: The impact of the generator’s nonlinearity and development of a new approach based on a variational
autoencoder. Geosciences. 152. 104762. 10.1016/j.cageo.2021.104762.

[4] McAliley, W.A., Li,Y. (2021) Machine learning inversion of geophysical data by a conditional variational
autoencoder Society of Exploration Geophysics 10.1190/segam2021-3594761.1

[5] Adam Paszke et al.(2019) PyTorch: An Imperative Style, High-Performance Deep Learning Library
http://arxiv.org/abs/1912.01703

[6] Lopez-Alvis, https://github.com/jlalvis/VAESGDfield



	Introduction
	DGNN Inversion and Related Work
	Inversion and DGNN inversion
	Recent Work

	Methods
	Gravity Inversion
	Synthetic Model Generation
	VAE Architecture and Training Parameters

	Results
	Simple Sphere Convexity Test
	Geologically realistic inversion

	Discussion and Future Work

